

Wind Resistance of Green Roof Systems in Florida –

Developing A Wind Test Protocol

Principal Investigator: Co-Investigators:

Graduate Research Assistant: Research Assistant:

David O. Prevatt, Ph.D., P.E. (MA) Glenn A. Acomb, FASLA Forrest J. Masters, Ph.D., P.E. (FL) nt: Tuan D. Vo, E.I. Nick K. Schild




SLIDE

# Research Scope and Objectives

- **Task 2:** Investigate the performance of vegetative roof systems appropriate to Florida building for performance in hurricane wind and rain conditions.
  - (a) Capture and present the most recent research on vegetative roofs in the public domain. Catalogue and compare the vegetative roof systems (in Florida), their (wind) anchorage to the roof structures and installation and design criteria.
  - Approximately 12 million sq. ft. of green roofing systems in the US.
  - Nearly one-third of these are in southeastern U.S. (including Texas). Less than 2% of US green roofs are installed in Florida.
  - UF Report UF04-11 (September 2011): extensive literature review.
  - No Verification Test Protocol Exists for Wind Uplift Performance

**Green Roof Design Guidelines** 





2008 edition

German FLL

FM Glob

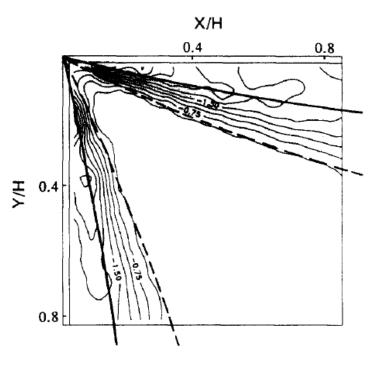
Property

2.3 Operation 2.3.1 Iring 2.3.2 Fert 2.3.3 Lent 3.3 Wind Spi 3.2 Wind Spi 3.3 Wind Spi 3.3 Wind Spi 3.4 Hall ... 3.5 Gravity 3.6 Seismir 3.7 Root D 3.8 Root S 3.9 Suppol 3.10 Non-

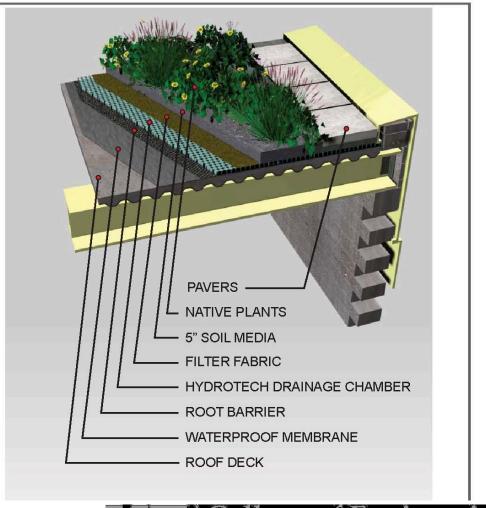
ANSI/SPRI VF-1 **External Fire Design Standard** for Vegetative Roofs This standard was developed in cooperation with Green Roots for Healthy Cities. Approved January 29, 2010 ANSI/SPRI VF-1 Table of Contents External Fire Design Standard 1.0 Introduction for Vegetative Roofs ANSI 2.0 Definitions.... This standard was developed in conneration with Green Boots for Healthy Othe 2.1 Ballast XXX . 2010 Table of Contents 2.2 Border zone 1.0 Introduction 2.3 Firestops SPRI 2.0 Definitions. 2.1 Ballast 2.4 Gravel ston 2.5 Growing media 2.2 Border zone 2.3 Firestops 2.6 Parapet 2.4 Gravel stor 2.7 Penetration 2.5 Growing n GREEN ROOFS 2.6 Parapet 2.8 Roof areas 2.7 Penetratio 2.9 Succulent 9 GREEN ROOFS 2.8 Roof area 2.10 Grasses 2.9 Succuler 2.10 Grasses 2.11 Vegetative roofing system 2.11 Vegetative roofing set System requirements & general design considerations. 3.0 System requirements & general deal 3.1 Roof structure design or evaluation 3.1 Roof structure design or evaluat ... 27 3.2 Membrane requirements 3.2 Membrane requirements . 27 3.3 Slope 3.3 Slope 3.4 Fire stops ... 32 3.5 Interior fire rating: steel decks: concrete deck 3.4 Fire stops 3.6 Exterior fire rating 3.5 Interior fire rating: steel decks: concrete decks 3.7 Wind design 3.6 Exterior fire rating Vegetative roof design options . 4.1 Generic fire resistive vegetative systems ... 34 3.7 Wind design 4.2 Fire ordection for roof too structures and penetration ... 35 4.3 Spread of fire, protection for large area roofs Vegetative roof design options 4.4 Fire hydrants 4.1 Generic fire resistive vegetative systems 4.5 Border zoner 4.2 Fire protection for roof top structures and penetrations 4.3 Spread of fire, protection for large area roofs ary to VE-1 4.4 Fire hydrants 4.5 Border zone claimer s standard is for use by architects, engineers, roofing contractors is elope roofing systems. SPRI, its members and employees do not entary to VF-1. VF-1 Discialme This standard is for use by architects, engineers, roofing contractors and owners of ow slope roofing systems. SPRI, its members and employees do not warrant that this standard is proper and applicable under all conditions.

ASTM-E2396: Saturated Water Permeability of Deravelar Drainage Media ASTM-E2397: Determination of Dead/Dieside astance of Parts for Green Roof Systems ASTM-E2398: Water Capture and Media Retencion OF Gead Minor Dead Provide Drain Layers ASTM-E2399: Maximum Media Density for Dead Coat Analysis (Factory Mutual Institution and Maintenance of Plants for Green Roof Systems Guide German FLL: Green Roofing Guideline

(FLL, 2008)


**JF** College of Engineering UNIVERSITY *of* FLORIDA

# Green Roof Standards/Guidelines


- FLL site condition checklist:
  - Climate and weather-dependent factors
  - Structure-dependent factors
  - Plant-specific factors for design & maintenance (not selection)
- FM Global I-35: most conservative guide
  - 100 mph limit = restricts green roofs in FL
  - Commercial roofs on metal or concrete decks
- RP-14: Prescriptive wind design guide and tables
  - Unprotected media limit of 5" diameter (influences plant selection)
  - Design tables per ASCE 7-05 wind maps

Recommendation: Florida Green Roof Design Guide should develop from a combination of the FLL, RP-14, VF-1 and FM 1-35.

### Wind Load on Green Roof Sytems



Critical wind load: corner and roof edges



College of Engineering

slide 5

# Research Scope and Objectives

#### Phase 2 Tasks:

- (b) Conduct wind uplift tests on full scale "Florida-appropriate" green roof systems and develop preliminary understanding of the performance in high winds. Evaluate minimum biomass loss, scouring characteristics, and plant damage for moderate, strong and extreme winds. Determine effect of rain on wind performance. Assess the rate of recovery of vegetation and effect of multiple wind storms.
- (c) Conduct parametric studies of factors affecting uproot resistance and plant breakage strength of plants used in vegetative roof systems, and scour resistance for green roof systems. Develop a standardized test procedure for evaluating green roofs hurricane wind related performance and submit protocol to ASTM and the Green Roof Council to initiate national consensus standards development.

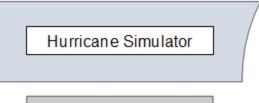
# Experimental Design

- Full-scale wind uplift tests on green roofs systems (6 ft by 6 ft)
- Evaluate three growth media depths: 4 in., 6 in. and 8 in.
- Simulate modular tray and built-in-place green roof systems
- Identify appropriate plants suited to the Florida climate.
- Determine effect of water-soaked growth media on performance
- Develop test methods to evaluate wind uplift capacity of roots



# Phase I Test Setup

SLIDE 8


- 6 tests of modular tray roofs
- 3 tests 4 in. depth, 3 test 8 in. depth
- 9 trays per test, incl. 1 unprotected module
- Wind speeds, 30, 40, 50, 70, 90 120 mph
- 5 minutes each test
- Wind azimuth 90 degrees
- I2 in. high parapet
- 6 plant varieties mixed

**F College of Engineering** 



#### Phase I Test Matrix

| Phase 1: Modular Tray Green Roof Test Matrix |                         |                             |                 |                          |                                   |  |
|----------------------------------------------|-------------------------|-----------------------------|-----------------|--------------------------|-----------------------------------|--|
| Test ID                                      | Wind<br>Testing<br>Date | Establish<br>ment<br>Period | Plant<br>Height | Parapet<br>Configuration | Unprotected<br>Module<br>Location |  |
| 4" – T1                                      | 08/18/2011              | 3 months                    | Mixed           | Encompassing             | 9                                 |  |
| 4" – T2                                      | 08/18/2011              | 3 months                    | Mixed           | Encompassing             | 5                                 |  |
| 4" – T3                                      | 08/18/2011              | 3 months                    | Mixed           | Encompassing             | 1                                 |  |
| 8" – T1                                      | 08/18/2011              | 3 months                    | Mixed           | Encompassing             | 7                                 |  |
| 8" – T2                                      | 10/20/2011              | 5 months                    | Mixed           | Encompassing             | 8                                 |  |
| 8" – T3                                      | 02/16/2011              | 9 months                    | Mixed           | Back wall<br>removed     | 8                                 |  |





Module Location Identification

#### Observation:

Severe scour at corners in unprotected module trays.

8 in. depth growth media trays produce robust plants but severe dieback occurs in dry winter



**College of Engineering** 

### Examples: Scour at Roof Corner and Edges



Phase I:Test Trial I, leeward corner



Phase 2: Test Trial T7, windward corner



SLIDE

# Phase I Conclusions

- 8" better for plant health than 4" (irrigation needed)
- Protection provided by parapets (but movement of media on roof)
- Dormant woody plants a fire hazard in winter unless fuel removed
- Wind speed under 70 mph not damaging in short term tests
- Limitation of test (simulator produces low turbulence wind flow ~5% TI) which is likely far less damaging than real winds

#### Phast 2 Test Setup





### Phase 2 Test Setup





# Phase 2 Test Setup

- 16 Trials; 45 degree wind azimuth; no parapets (conservative)
- 8 tests <u>built-in-place</u> green roof assemblies (<u>normal</u> vs. <u>saturated</u>)
- 8 tests module trays; 4 repeated and 4 6-month old
- Wind speed: 100 mph; held for <u>10 minutes</u> and <u>20 minutes</u>
- Trays planted in <u>short</u> plant species and <u>tall</u> species (in 6 month old trays)

#### Phase 2 Test Matrix

| Phase 2: Built-in-Place Green Roof Test Matrix |            |                         |                         |          |              |                         |
|------------------------------------------------|------------|-------------------------|-------------------------|----------|--------------|-------------------------|
| Test ID                                        | Plant Date | W i n d<br>Testing Date | Establishment<br>Period | Moisture | Plant Height | 20 min. test<br>(Y/N ?) |
| N-S1                                           | 04/25/2012 | 06/12/2012              | 7 weeks                 | Normal   | Short        | No                      |
| N-S2                                           | 04/25/2012 | 06/13/2012              | 7 weeks                 | Normal   | Short        | No                      |
| N-T1                                           | 04/25/2012 | 06/12/2012              | 7 weeks                 | Normal   | Tall         | No                      |
| N-T2                                           | 04/25/2012 | 06/13/2012              | 7 weeks                 | Normal   | Tall         | No                      |
| S-S1                                           | 04/28/2012 | 06/13/2012              | 6.5 weeks               | Wet      | Short        | No                      |
| S-S2                                           | 04/28/2012 | 06/13/2012              | 6.5 weeks               | Wet      | Short        | No                      |
| S-T1                                           | 04/28/2012 | 06/19/2012              | 7.5 weeks               | Wet      | Tall         | Yes*                    |
| S-T2                                           | 04/28/2012 | 06/19/2012              | 7.5 weeks               | Wet      | Tall         | Yes*                    |

| Phase 2: Modular Tray Green Roof Test Matrix |                      |                         |             |              |                    |  |
|----------------------------------------------|----------------------|-------------------------|-------------|--------------|--------------------|--|
| Test ID                                      | Wind Testing<br>Date | Establishment<br>Period | Media Depth | Plant Height | Continued Testing? |  |
| T2                                           | 06/18/2012           | 13 months               | 4"          | Mixed        | No                 |  |
| Т3                                           | 06/18/2012           | 13 months               | 4"          | Mixed        | No                 |  |
| T5                                           | 06/20/2012           | 13 months               | 8"          | Mixed        | No                 |  |
| Т6                                           | 06/20/2012           | 13 months               | 8"          | Mixed        | No                 |  |
| T7                                           | 06/21/2012           | 6 months                | 4"          | Tall         | Yes                |  |
| <b>T8</b>                                    | 06/20/2012           | 6 months                | 4"          | Short        | No                 |  |
| T10                                          | 06/22/2012           | 6 months                | 8"          | Tall         | Yes                |  |
| T11                                          | 06/22/2012           | 6 months                | 8"          | Short        | No                 |  |

# Results: Short versus Tall Plants, & Duration

| - |                |                |                |                                                          |
|---|----------------|----------------|----------------|----------------------------------------------------------|
|   | 27.7%<br>-0.8% | 20.6%<br>-1.6% | 17.8%<br>-0.6% | Key:<br>Top: Moisture content<br>Bottom: Change in weigh |
|   | 29.0%<br>-0.6% | 26.7%<br>-0.6% | 26.1%<br>-1.3% |                                                          |
|   | 15.4%<br>-1.0% | 28.9%<br>-0.8% | 26.9%<br>-0.7% |                                                          |

10 Minute Modular Tray Green Roof Test (TII – short plant)

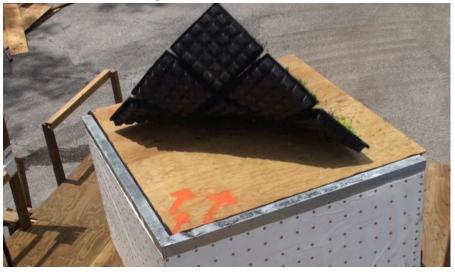
**RECOMMENDATION:** 

Moisture content was not a major factor

Coverage ratio reduces with time, therefore significant loss in plant coverage in a "normal" hurricane.

> **Engineen** VERSITY of FLORIDA

SLIDE 17


| Ē  |        |       |       |
|----|--------|-------|-------|
| nt | 19.4%  | 22.0% | 17.7% |
|    | -13.5% | -2.7% | -1.2% |
|    | 14.5%  | 19.3% | 21.4% |
|    | -1.7%  | -2.3% | +0.2% |
|    | 17.4%  | 16.0% | 24.5% |
|    | -0.7%  | -0.4% | -0.9% |

20 Minute Modular Tray Green Roof Test (TI0 - tall plant)

#### Green Roof Anchorage



Case I: No Internal ties



Case 2: Internal ties provided

#### **RECOMMENDATION:**

- Anchorage is required for all green roofs to the structure/substrate
   Unprotected growth media susceptible to scour
- Parapets and sufficient dead load of green roof may minimize failure



slide

#### University of Florida Research Wind and Plant Performance Studies for Green Roof Systems in FL Deeper Media Depth = Healthier Plants



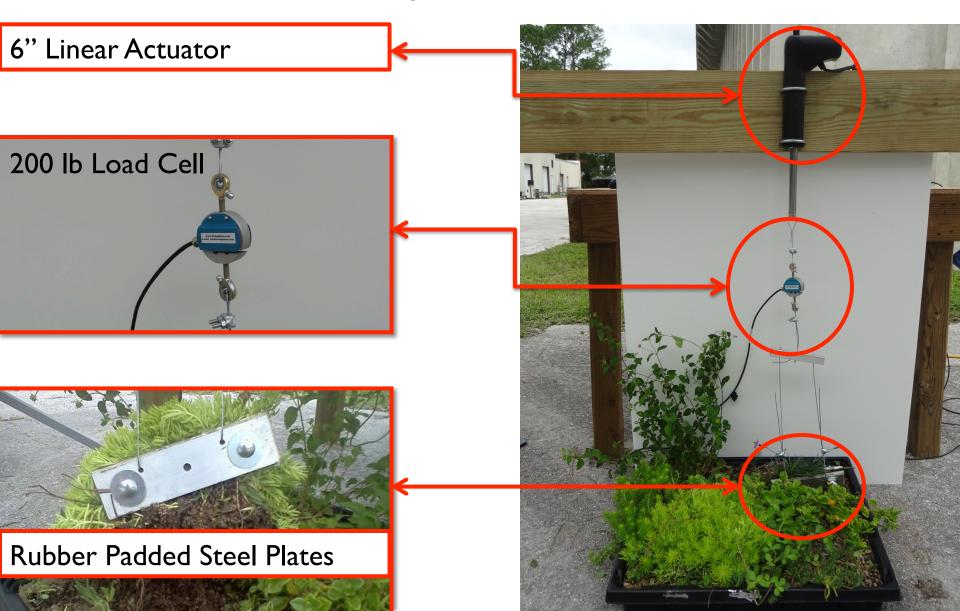


4 in. deep module trays 8 in. deep module trays RECOMMENDATION: Assume 6 in. minimum growth media depth for Florida

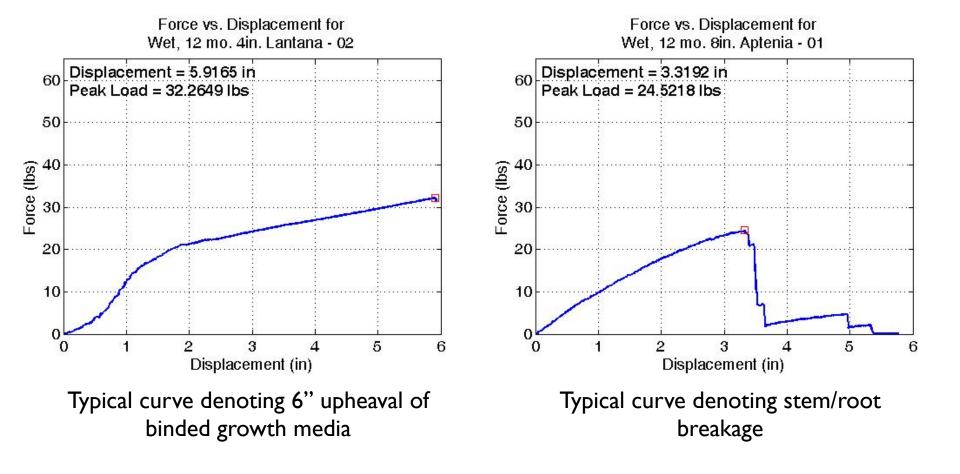
- . Decreases heat flux effect on roots
- 2. Greater dead load mitigates chance of green roof displacement



Stady t, and that a species cipes ci


Shortania capapiesies faster testing

• RECOMMENDATION: Use low-lying plants (horizontal stem spread) to minimize wind uplift forces.




slide

Root Uplift Test Device



# Typical Force vs. Displacement Plots



UF College of Engineering UNIVERSITY of FLORIDA

# Uproot Resistance

- Root network minimizes scour potential of growth media
- Roots fully bound the media in 6 mo. and 12 mo. modules
- Lantana species showed highest uproot resistance, showing only 1 sign of stem breakage. Delosperma performed the worst.
- Uproot test results suggest that given sufficient establishment, wind damage does not affect uproot resistance of a plant







# Green Roof Plant Species for Florida

- Considerations:
  - I. Plants must tolerate extreme heat and drought
  - 2. Plant root system habit and depth must be understood
  - 3. Plants must be hardy and low-maintenance
  - 4. Irrigation is needed
  - 5. Origin of plants should be within the region and grown to match the roof conditions
  - 6. Plant form and leaf area should limit uplift
  - 7. Plants should achieve coverage quickly



# Plant Selection Performance

- Of the selected plant species, none failed excessively in comparison to each other.
- Taller plant species were more susceptible to bending and root lodging, and resulted in higher amounts of media exposure.
- The originally planted Lantana and Salvia experienced extreme stress after Phase I, due to sporadic irrigation in the winter months and suffered many losses.
- Succulents perform better in surviving heat and dry extremes, as well as wind desiccation

# Summary

- Major conclusions
  - Avoid using tall plants in significant proportions reduced wind stresses
  - Vegetation coverage and root networks helpful to reduce scour
  - A minimimum test period of 20 minute recommended (more is better)
  - Root uplift tests useful but need to be calibrated to wind uplift tests.
  - Studies are needed using high turbulence wind flows 9 (15%-25%)
- Future recommendations
  - ASTM E60 Subcommittee: Will review report for inclusion in their work
  - Wind Load on Green Roof at CitiesAlive Conference Chicago 2012
  - Currently 3 scientific papers in preparation on the work

# Thank you for Your Attention!

# Comments/Questions?

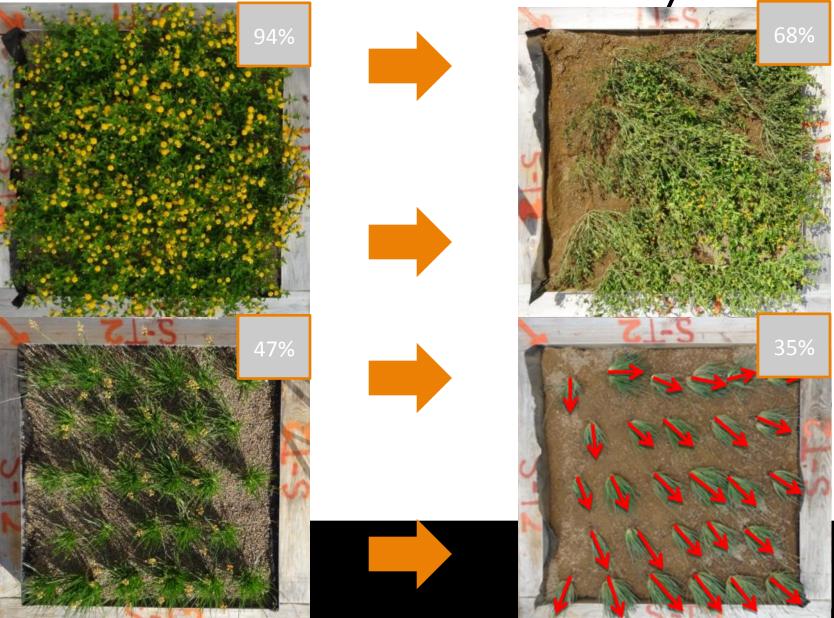
David O. Prevatt dprev@ufl.edu 352-672-2660



slide

# Phase 2: Modular Tray Green Roof Systems

- Measured losses show uniform media loss across the roof surface as opposed to Phase I's redistribution
- Coverage ratio
   losses were lower
   in modular trays than
   built-in-place assemblies
- Modular tray green roofs display localized scour patterns






### Phase 2: Built-in-Place Green Roof Systems



### Phase 2: Built-in-Place Green Roof Systems



# Green Roof Anchorage

- Therefore, through the observed movement in Phase I and failures in Phase 2, as well as UCF's documented wind-induced failure, the investigators identified that for adequate system anchorage, it was necessary to implement one (or a combination) of the following options:
  - Install green roof systems with sufficient dead load to resist uplift with proper maintenance and vegetation to provide scour resistance
  - Mechanically attach the green roof system to the roof deck
  - Utilize a parapet of sufficient height to prevent wind flow from reaching the underside of a loosely laid green roof system

